Search results
Results from the WOW.Com Content Network
Richard Caton discovered electrical activity in the cerebral hemispheres of rabbits and monkeys and presented his findings in 1875. [4] Adolf Beck published in 1890 his observations of spontaneous electrical activity of the brain of rabbits and dogs that included rhythmic oscillations altered by light, detected with electrodes directly placed on the surface of the brain. [5]
[58] [77] More specifically, the scalp electrical potentials that produce EEG are generally thought to be caused by the extracellular ionic currents caused by dendritic electrical activity, whereas the fields producing magnetoencephalographic signals [28] are associated with intracellular ionic currents. [78]
Brainwave entrainment, also referred to as brainwave synchronization or neural entrainment, refers to the observation that brainwaves (large-scale electrical oscillations in the brain) will naturally synchronize to the rhythm of periodic external stimuli, such as flickering lights, [1] speech, [2] music, [3] or tactile stimuli.
Electrical brain stimulation (EBS), also referred to as focal brain stimulation (FBS), is a form of electrotherapy and neurotherapy used as a technique in research and clinical neurobiology to stimulate a neuron or neural network in the brain through the direct or indirect excitation of its cell membrane by using an electric current.
They are effectively used to determine cortical ischemia during carotid endarterectomy surgeries and for mapping the sensory areas of the brain during brain surgery. Electrical stimulation of the scalp can produce an electric current within the brain that activates the motor pathways of the pyramidal tracts.
Electrical input–output membrane voltage models – These models produce a prediction for membrane output voltage as a function of electrical stimulation given as current or voltage input. The various models in this category differ in the exact functional relationship between the input current and the output voltage and in the level of detail.
The electrode delivers an electric current lasting from 2 to 10 seconds on the surface of the brain, causing a reversible lesion in a particular brain location. This lesion can prevent or produce a testable response, such as the movement of a limb or the ability to identify an object.
Neuronal electrophysiology is the study of electrical properties of biological cells and tissues within the nervous system. With neuronal electrophysiology doctors and specialists can determine how neuronal disorders happen, by looking at the individual's brain activity.