Search results
Results from the WOW.Com Content Network
The most general proper Lorentz transformation Λ(v, θ) includes a boost and rotation together, and is a nonsymmetric matrix. As special cases, Λ(0, θ) = R(θ) and Λ(v, 0) = B(v). An explicit form of the general Lorentz transformation is cumbersome to write down and will not be given here.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...
A derivation for the transformation of the Lorentz force for the particular case u = 0 is given here. [4] A more general one can be seen here. [5] The transformations in this form can be made more compact by introducing the electromagnetic tensor (defined below), which is a covariant tensor.
In special relativity, the electric and magnetic fields transform under Lorentz transformations. This can be written in the form of a rank two tensor – the electromagnetic tensor . The 16 contravariant components of the electromagnetic tensor, using Minkowski metric convention (+ − − −) , are written in terms of the electromagnetic four ...
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
The Lorentz force law states that a particle of charge q ... modern vector notation and applied it ... where Λ μ α is the Lorentz transformation tensor. ...
The angular momentum tensor M is indeed a tensor, the components change according to a Lorentz transformation matrix Λ, as illustrated in the usual way by tensor index notation ′ = ′ ′ ′ ′ = = =, where, for a boost (without rotations) with normalized velocity β = v/c, the Lorentz transformation matrix elements are = = = = + and the ...