Search results
Results from the WOW.Com Content Network
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
The resulting flow is termed electroosmotic flow. In CEC positive ions of the electrolyte added along with the analyte accumulate in the electrical double layer of the particles of the column packing on application of an electric field they move towards the cathode and drag the liquid mobile phase with them.
As all blood vessels allow a degree of protein leak , true equilibrium across the membrane cannot occur and there is a continuous flow of water with small solutes. The molecular sieving properties of the capillary wall reside in a recently-discovered endocapillary layer rather than in the dimensions of pores through or between the endothelial ...
Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels.Very often, CE refers to capillary zone electrophoresis (CZE), but other electrophoretic techniques including capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis and micellar ...
Capillary electrophoresis is a separation technique which uses high electric field to produce electroosmotic flow for separation of ions. Analytes migrate from one end of capillary to other based on their charge, viscosity and size. Higher the electric field, greater is the mobility.
Electro-galvanic fuel cell (EGFC)an electrical device used to measure the concentration of oxygen gas in scuba diving and medical equipment. Electroosmotic flow Electroosmotic flow (or Electro-osmotic flow, often abbreviated EOF) is the motion of liquid induced by an applied potential across a capillary tube or microchannel. Electroosmotic flow ...
Continuous flow microfluidics rely on the control of a steady state liquid flow through narrow channels or porous media predominantly by accelerating or hindering fluid flow in capillary elements. [28] In paper based microfluidics, capillary elements can be achieved through the simple variation of section geometry.
The microcirculation has three major components: pre-capillary, capillary, and post-capillary. In the pre-capillary sector, arterioles, and precapillary sphincters participate. Their function is to regulate blood flow before it enters the capillaries and venules by the contraction and relaxation of the smooth muscle found on their walls.