Search results
Results from the WOW.Com Content Network
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Archival research; Case study uses different research methods (e.g. interview, observation, self-report questionnaire) with a single case or small number of cases. Computer simulation (modeling) Ethnography; Event sampling methodology, also referred to as experience sampling methodology, diary study, or ecological momentary assessment
Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed.
Interpretative phenomenological analysis (IPA) is a qualitative form of psychology research. IPA has an idiographic focus, which means that instead of producing generalization findings, it aims to offer insights into how a given person, in a given context, makes sense of a given situation. Usually, these situations are of personal significance ...
Zieffler et al. (2008) suggest three types of tasks that have been used in studies of students' informal inferential reasoning and its development. Estimate and draw a graph of a population based on a sample; Compare two or more samples of data to infer whether there is a real difference between the populations from which they were sampled
To illustrate, consider an example from Cook et al. where the analysis task is to find the variables which best predict the tip that a dining party will give to the waiter. [12] The variables available in the data collected for this task are: the tip amount, total bill, payer gender, smoking/non-smoking section, time of day, day of the week ...
Inferential analysis analyses a sample from complete data to compare the difference between treatment groups. [53] Multiple conclusions are constructed by selecting different samples. Inferential analysis can provide evidence that, with a certain percentage of confidence, there is a relationship between two variables.
Like univariate analysis, bivariate analysis can be descriptive or inferential. It is the analysis of the relationship between the two variables. [ 1 ] Bivariate analysis is a simple (two variable) special case of multivariate analysis (where multiple relations between multiple variables are examined simultaneously).