Search results
Results from the WOW.Com Content Network
Phenylboronic acid or benzeneboronic acid, abbreviated as PhB(OH) 2 where Ph is the phenyl group C 6 H 5 - and B(OH) 2 is a boronic acid containing a phenyl substituent and two hydroxyl groups attached to boron. Phenylboronic acid is a white powder and is commonly used in organic synthesis.
It has the formula [(CH 3) 4 C 2 O 2 B] 2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B 2 pin 2. It is a colourless solid that is soluble in organic solvents. It is a commercially available reagent for making pinacol boronic esters for organic synthesis.
The general structure of a boronic acid, where R is a substituent. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
Pinacol is a branched alcohol which finds use in organic syntheses. It is a diol that has hydroxyl groups on vicinal carbon atoms. A white solid that melts just above room temperature, pinacol is notable for undergoing the pinacol rearrangement in the presence of acid and for being the namesake of the pinacol coupling reaction .
Basic heteroaromatic boronic acids (boronic acids that contain a basic nitrogen atom, such as 2-pyridine boronic acid) display additional protodeboronation mechanisms. [4] A key finding shows the speciation of basic heteroaromatic boronic acids to be analogous to that of simple amino acids , with zwitterionic species forming under neutral pH ...
The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]
A cyclopropyl group is a chemical structure derived from cyclopropane; it is typically produced in a cyclopropanation reaction. The group has an empirical formula of C 3 H 5 and chemical bonds from each of the three carbons to both of the other two.
Metal templating by Cu(II/III) acts as a Lewis acid to both activate the thiol ester and deliver R 2 (from either boron directly or via an intermediate Cu-R 2 species), which produces the ketone and a Cu-thiolate. A second equivalent of boronic acid is needed to break the copper sulfur bond and liberate copper back into the catalytic cycle.