Search results
Results from the WOW.Com Content Network
The basilar membrane is also the base for the hair cells. This function is present in all land vertebrates. Due to its location, the basilar membrane places the hair cells adjacent to both the endolymph and the perilymph, which is a precondition of hair cell function.
The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells ...
In mammals, the auditory hair cells are located within the spiral organ of Corti on the thin basilar membrane in the cochlea of the inner ear. They derive their name from the tufts of stereocilia called hair bundles that protrude from the apical surface of the cell into the fluid-filled cochlear duct .
They lie on the basilar membrane beneath Claudius' cells and are organized in rows, the number of which varies between species. The cells interdigitate with each other, and project microvilli into the intercellular space. They are supporting cells for the auditory hair cells in the organ of Corti. They are named after German pathologist Arthur ...
The stria vascularis is a rich bed of capillaries and secretory cells; Reissner's membrane is a thin membrane that separates endolymph from perilymph; and the basilar membrane is a mechanically somewhat stiff membrane, supporting the receptor organ for hearing, the organ of Corti, and determines the mechanical wave propagation properties of the ...
This movement is conveyed to the organ of Corti inside the cochlear duct, composed of hair cells attached to the basilar membrane and their stereocilia embedded in the tectorial membrane. The movement of the basilar membrane compared to the tectorial membrane causes the stereocilia to bend.
In the cochlea, a shearing movement between the tectorial membrane and the basilar membrane deflects the stereocilia, affecting the tension on the tip-link filaments, which then open and close the non-specific ion channels. [2] When tension increases, the flow of ions across the membrane into the hair cell rises as well.
As the basilar membrane vibrates, each clump of hair cells along its length is deflected in time with the sound components as filtered by basilar membrane tuning for its position. The more intense this vibration is, the more the hair cells are deflected and the more likely they are to cause cochlear nerve firings. Temporal theory supposes that ...