Search results
Results from the WOW.Com Content Network
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates , where they prevent cancer formation. [ 5 ]
Cdk5 phosphorylates and regulates the tumor suppressor protein p53. In apoptotic PC12 cells there is a simultaneous increase in Cdk5 and p53 levels, so it is thought that the mechanism by which Cdk5 induces apoptosis could be caused by phosphorylation and activation of p53. [53]
The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. [5] [6] In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. [5] [6] The expression of PUMA is regulated by the tumor suppressor p53.
The p53 p63 p73 family is a family of tumor suppressor genes. [1] [2] This gene family codes the proteins: p53; TP73L (also known as "p63") p73; They are sometimes considered part of a "p53 family." When overexpressed, these proteins are known to be involved in tumor pathogenesis. [3]
In the field of genetics, a suicide gene is a gene that will cause a cell to kill itself through the process of apoptosis (programmed cell death). Activation of a suicide gene can cause death through a variety of pathways, but one important cellular "switch" to induce apoptosis is the p53 protein.
P53 causes cells to enter apoptosis and disrupt further cell division therefore preventing that cell from becoming cancerous (16). In the majority of cancers it is the p53 pathway that has become mutated resulting in lack of ability to terminate dysfunctional cells.
The two main pathways that control the senescence response in most cells are the p53 and p16-pRB tumor suppressor pathways. As a transcription regulator, the p53 protein activates the transcription factor p21, which results in the transcription of proteins that result in cellular senescence. Research has shown that the pathway is primarily ...
The p53 protein is a transcription factor that, when activated as part of the cell's response to stress, regulates many downstream target genes, including BID. However, p53 also has a transcription-independent role in apoptosis. In particular, p53 interacts with Bax, promoting Bax activation and the insertion of Bax into the mitochondrial membrane.