Search results
Results from the WOW.Com Content Network
Supercritical hydrolysis is a method of converting all biomass polysaccharides as well the associated lignin into low molecular compounds by contacting with water alone under supercritical conditions. The supercritical water, acts as a solvent, a supplier of bond-breaking thermal energy, a heat transfer agent and as a source of hydrogen atoms.
Supercritical water has a density between that of water vapor and liquid at standard conditions, and exhibits high gas-like diffusion rates along with high liquid-like collision rates. In addition, the behavior of water as a solvent is altered (in comparison to that of subcritical liquid water) - it behaves much less like a polar solvent.
Superheated water is liquid water under pressure at temperatures between the usual boiling point, 100 °C (212 °F) and the critical temperature, 374 °C (705 °F). [ citation needed ] It is also known as "subcritical water" or "pressurized hot water".
The critical point of water occurs at 647.096 K (373.946 °C; 705.103 °F) and 22.064 megapascals (3,200.1 psi; 217.75 atm; 220.64 bar). [ 3 ] In the vicinity of the critical point, the physical properties of the liquid and the vapor change dramatically, with both phases becoming even more similar.
A transcritical cycle is a closed thermodynamic cycle where the working fluid goes through both subcritical and supercritical states. In particular, for power cycles the working fluid is kept in the liquid region during the compression phase and in vapour and/or supercritical conditions during the expansion phase.
Supercritical water exists at temperatures above 374 °C and pressures above 220 atmospheres. Diagram of a supercritical water-cooled nuclear reactor. A supercritical steam generator is a type of boiler that operates at supercritical pressure and temperature, frequently used in the production of electric power.
At these temperatures and pressures, the water present in the biomass becomes either subcritical or supercritical, depending on the conditions, and acts as a solvent, reactant, and catalyst to facilitate the reaction of biomass to bio-oil. The exact conversion of biomass to bio-oil is dependent on several variables: [1] Feedstock composition
The same logic applies downstream to determine that the water surface follows an M3 profile from the gate until the depth reaches the conjugate depth of the normal depth at which point a hydraulic jump forms to raise the water surface to the normal depth. Step 4: Use the Newton Raphson Method to solve the M1 and M3 surface water profiles. The ...