Search results
Results from the WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The line segment ¯ is divided into n equally-spaced segments and this division is projected parallel with the diagonal as direction onto the line segment ¯ (see diagram). The parallel projection is part of the projective mapping between the pencils at V 1 {\displaystyle V_{1}} and V 2 {\displaystyle V_{2}} needed.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent. [2] Leonhard Euler used it to evaluate the integral ∫ d x / ( a + b cos x ) {\textstyle \int dx/(a+b\cos x)} in his 1768 integral calculus textbook , [ 3 ] and Adrien-Marie Legendre described ...
This equation states that , representing the square of the length of the side that is the hypotenuse, the side opposite the right angle, is equal to the sum (addition) of the squares of the other two sides whose lengths are represented by a and b. An equation is the claim that two expressions have the same value and are equal.
The solution of a second-degree polynomial equation of the form + + = is given by the quadratic formula [36] = . Solutions for the degrees 3 and 4 are given by the cubic and quartic formulas. There are no general solutions for higher degrees, as proven in the 19th century by the Abel–Ruffini theorem . [ 37 ]
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.