enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  3. Blackwell-Girshick equation - Wikipedia

    en.wikipedia.org/wiki/Blackwell-Girshick_equation

    The Blackwell-Girshick equation is used in actuarial mathematics to calculate the variance of composite distributions, such as the compound Poisson distribution. Wald's equation provides similar statements about the expectation of composite distributions.

  4. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Poisson distribution ... The same proof is also applicable for samples taken from a continuous probability distribution. ... The variance of a probability ...

  5. Compound Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Compound_Poisson_distribution

    The shift geometric distribution is discrete compound Poisson distribution since it is a trivial case of negative binomial distribution. This distribution can model batch arrivals (such as in a bulk queue [5] [9]). The discrete compound Poisson distribution is also widely used in actuarial science for modelling the distribution of the total ...

  6. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    The limiting case n −1 = 0 is a Poisson distribution. The negative binomial distributions, (number of failures before r successes with probability p of success on each trial). The special case r = 1 is a geometric distribution. Every cumulant is just r times the corresponding

  7. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. [15] As an example, assume that each random variable in the series follows a Gaussian distribution (normal distribution) with mean zero, but with variance equal to 2 n / log ⁡ ( n + 1 ) {\displaystyle 2n/\log(n+1 ...

  8. Variance-stabilizing transformation - Wikipedia

    en.wikipedia.org/wiki/Variance-stabilizing...

    For example, suppose that the values x are realizations from different Poisson distributions: i.e. the distributions each have different mean values μ. Then, because for the Poisson distribution the variance is identical to the mean, the variance varies with the mean. However, if the simple variance-stabilizing transformation

  9. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    There is a one-to-one correspondence between cumulative distribution functions and characteristic functions, so it is possible to find one of these functions if we know the other. The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f).