Search results
Results from the WOW.Com Content Network
The purpose of this system may be to control where fluid flows (as in a network of tubes of coolant in a thermodynamic system) or to control fluid pressure (as in hydraulic amplifiers). For example, hydraulic machinery uses hydraulic circuits (in which hydraulic fluid is pushed, under pressure, through hydraulic pumps, pipes, tubes, hoses ...
Hydraulic actuators or hydraulic cylinders typically involve a hollow cylinder having a piston inserted in it. An unbalanced pressure applied to the piston generates a force that can move an external object. Since liquids are nearly incompressible, a hydraulic cylinder can provide controlled precise linear displacement of the piston. The ...
A schematic illustrating the major components of a hydraulic disc brake system. A hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing glycol ethers or diethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism.
The hydraulic press depends on Pascal's principle.The pressure throughout a closed system is constant. One part of the system is a piston acting as a pump, with a modest mechanical force acting on a small cross-sectional area; the other part is a piston with a larger area which generates a correspondingly large mechanical force.
Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows: A diagram which shows the interconnection of process equipment and the instrumentation used to control the process.
Hydraulic systems are deceptively simple: the phenomenon of pump cavitation is a known, complex problem that few people outside of the fluid power or irrigation industries would understand. For those who do, the hydraulic analogy is amusing, as no "cavitation" equivalent exists in electrical engineering.
A fluid power system has a pump driven by a prime mover (such as an electric motor or internal combustion engine) that converts mechanical energy into fluid energy, Pressurized fluid is controlled and directed by valves into an actuator device such as a hydraulic cylinder or pneumatic cylinder, to provide linear motion, or a hydraulic motor or pneumatic motor, to provide rotary motion or torque.
A hydraulic cylinder is the actuator or "motor" side of this system. The "generator" side of the hydraulic system is the hydraulic pump which delivers a fixed or regulated flow of oil to the hydraulic cylinder, to move the piston. There are three types of pump widely used: hydraulic hand pump, hydraulic air pump, and hydraulic electric pump.