Search results
Results from the WOW.Com Content Network
Memory-mapped I/O is preferred in IA-32 and x86-64 based architectures because the instructions that perform port-based I/O are limited to one register: EAX, AX, and AL are the only registers that data can be moved into or out of, and either a byte-sized immediate value in the instruction or a value in register DX determines which port is the source or destination port of the transfer.
It is the fastest and most flexible cache organization that uses an associative memory. The associative memory stores both the address and content of the memory word. [further explanation needed] In the boot process of some computers, a memory map may be passed on from the firmware to instruct an operating system kernel about memory layout. It ...
In computing, memory mapping may refer to: Memory-mapped file , also known as mmap() Memory-mapped I/O , an alternative to port I/O; a communication between CPU and peripheral device using the same instructions, and same bus, as between CPU and memory
The IOMMU handles this re-mapping, allowing the native device drivers to be used in a guest operating system. In some architectures IOMMU also performs hardware interrupt re-mapping, in a manner similar to standard memory address re-mapping. Peripheral memory paging can be supported by an IOMMU.
In the case of operating systems that support virtual memory, the loader may not actually copy the contents of executable files into memory, but rather may simply declare to the virtual memory subsystem that there is a mapping between a region of memory allocated to contain the running program's code and the contents of the associated ...
The main difference between System V shared memory (shmem) and memory mapped I/O (mmap) is that System V shared memory is persistent: unless explicitly removed by a process, it is kept in memory and remains available until the system is shut down. mmap'd memory is not persistent between application executions (unless it is backed by a file).
In x86 systems, typically the BIOS / UEFI ROM is mapped to a fixed memory space upon power-on, [3] and BIOS / UEFI in x86 systems use XIP to initialize the main memory. In ARM and RISC-V embedded systems, typically the SoC built-in boot ROM is mapped to a fixed memory space upon power-on, and the boot ROM can find and load an embedded ...
A memory management unit (MMU), sometimes called paged memory management unit (PMMU), [1] is a computer hardware unit that examines all memory references on the memory bus, translating these requests, known as virtual memory addresses, into physical addresses in main memory. In modern systems, programs generally have addresses that access the ...