enow.com Web Search

  1. Ad

    related to: examples of explanatory research methods in statistics free pdf textbook

Search results

  1. Results from the WOW.Com Content Network
  2. Difference in differences - Wikipedia

    en.wikipedia.org/wiki/Difference_in_differences

    Difference in differences (DID [1] or DD [2]) is a statistical technique used in econometrics and quantitative research in the social sciences that attempts to mimic an experimental research design using observational study data, by studying the differential effect of a treatment on a 'treatment group' versus a 'control group' in a natural experiment. [3]

  3. Response surface methodology - Wikipedia

    en.wikipedia.org/wiki/Response_surface_methodology

    In statistics, response surface methodology (RSM) explores the relationships between several explanatory variables and one or more response variables. RSM is an empirical model which employs the use of mathematical and statistical techniques to relate input variables, otherwise known as factors, to the response.

  4. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    Exploratory data analysis, robust statistics, nonparametric statistics, and the development of statistical programming languages facilitated statisticians' work on scientific and engineering problems. Such problems included the fabrication of semiconductors and the understanding of communications networks, which concerned Bell Labs.

  5. Exploratory causal analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_causal_analysis

    Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.

  6. Exploratory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_factor_analysis

    The maximum likelihood method has many advantages in that it allows researchers to compute of a wide range of indexes of the goodness of fit of the model, it allows researchers to test the statistical significance of factor loadings, calculate correlations among factors and compute confidence intervals for these parameters. [6]

  7. Models of scientific inquiry - Wikipedia

    en.wikipedia.org/wiki/Models_of_scientific_inquiry

    It is explanatory knowledge that provides scientific understanding of the world. (Salmon, 2006, pg. 3) [1] According to the National Research Council (United States): "Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work." [2]

  8. Instrumental variables estimation - Wikipedia

    en.wikipedia.org/wiki/Instrumental_variables...

    Informally, in attempting to estimate the causal effect of some variable X ("covariate" or "explanatory variable") on another Y ("dependent variable"), an instrument is a third variable Z which affects Y only through its effect on X. For example, suppose a researcher wishes to estimate the causal effect of smoking (X) on general health (Y). [5]

  9. Statistical theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_theory

    The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.

  1. Ad

    related to: examples of explanatory research methods in statistics free pdf textbook