Search results
Results from the WOW.Com Content Network
Broyden's method is a generalization of the secant method to more than one dimension. The following graph shows the function f in red and the last secant line in bold blue. In the graph, the x intercept of the secant line seems to be a good approximation of the root of f.
The secant method increases the number of correct digits by "only" a factor of roughly 1.6 per step, but one can do twice as many steps of the secant method within a given time. Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [a] in practical use the secant method actually converges faster than ...
Secant = ... The Chebyshev method is a recursive algorithm for finding the n th multiple angle formula knowing the ...
As noted in the introduction, inverse quadratic interpolation is used in Brent's method. Inverse quadratic interpolation is also closely related to some other root-finding methods. Using linear interpolation instead of quadratic interpolation gives the secant method. Interpolating f instead of the inverse of f gives Muller's method.
The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.
Brent's method is a combination of the bisection method, the secant method and inverse quadratic interpolation. At every iteration, Brent's method decides which method out of these three is likely to do best, and proceeds by doing a step according to that method. This gives a robust and fast method, which therefore enjoys considerable popularity.
The method is a generalization of the secant method. Like the secant method, it is an iterative method which requires one evaluation of in each iteration and no derivatives of . The method can converge much faster though, with an order which approaches 2 provided that satisfies the regularity conditions described below.
The Symmetric Rank 1 (SR1) method is a quasi-Newton method to update the second derivative (Hessian) based on the derivatives (gradients) calculated at two points. It is a generalization to the secant method for a multidimensional problem.