enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]

  3. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    kinematic viscosity: meter squared per second (m 2 /s) neutrino: xi: electromotive force: volt (V) pi: 3.14159... (irrational number) unitless rho: mass density usually simply called density kilogram per cubic meter (kg/m 3) volume charge density: coulomb per cubic meter (C/m 3) resistivity: ohm meter (Ω⋅m)

  4. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    where it is assumed that all body forces are describable as gradients (for example it is true for gravity), and density has been divided so that viscosity becomes kinematic viscosity. The second vector calculus identity above states that the divergence of the curl of a vector field is zero.

  5. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    ν is the kinematic viscosity of the fluid, ν = ⁠ μ / ρ ⁠ (m 2 /s); ρ is the density of the fluid (kg/m 3 ). For such systems, laminar flow occurs when the Reynolds number is below a critical value of approximately 2,040, though the transition range is typically between 1,800 and 2,100.

  6. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    Its effect on the mean flow is like that of a stress term, such as from pressure or viscosity. To obtain equations containing only the mean velocity and pressure, we need to close the RANS equations by modelling the Reynolds stress term R i j {\displaystyle R_{ij}} as a function of the mean flow, removing any reference to the fluctuating part ...

  7. Viscometer - Wikipedia

    en.wikipedia.org/wiki/Viscometer

    A built-in density measurement based on the oscillating U-tube principle allows the determination of kinematic viscosity from the measured dynamic viscosity employing the relation =, where: ν is the kinematic viscosity (mm 2 /s), η is the dynamic viscosity (mPa·s), ρ is the density (g/cm 3).

  8. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.

  9. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.