enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Noise figure - Wikipedia

    en.wikipedia.org/wiki/Noise_figure

    Attenuators have a noise factor F equal to their attenuation ratio L when their physical temperature equals T 0. More generally, for an attenuator at a physical temperature T, the noise temperature is T e = (L − 1)T, giving a noise factor = + ().

  3. Noise temperature - Wikipedia

    en.wikipedia.org/wiki/Noise_temperature

    The noise factor (a linear term) is more often expressed as the noise figure (in decibels) using the conversion: = ⁡ The noise figure can also be seen as the decrease in signal-to-noise ratio (SNR) caused by passing a signal through a system if the original signal had a noise temperature of 290 K. This is a common way of expressing the noise ...

  4. Attenuation coefficient - Wikipedia

    en.wikipedia.org/wiki/Attenuation_coefficient

    Most commonly, the quantity measures the exponential decay of intensity, that is, the value of downward e-folding distance of the original intensity as the energy of the intensity passes through a unit (e.g. one meter) thickness of material, so that an attenuation coefficient of 1 m −1 means that after passing through 1 metre, the radiation ...

  5. Attenuation - Wikipedia

    en.wikipedia.org/wiki/Attenuation

    The attenuation in the signal of ground motion intensity plays an important role in the assessment of possible strong groundshaking. A seismic wave loses energy as it propagates through the earth (seismic attenuation). This phenomenon is tied into the dispersion of the seismic energy with the distance. There are two types of dissipated energy:

  6. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  7. Friis formulas for noise - Wikipedia

    en.wikipedia.org/wiki/Friis_formulas_for_noise

    Friis's formula is used to calculate the total noise factor of a cascade of stages, each with its own noise factor and power gain (assuming that the impedances are matched at each stage). The total noise factor can then be used to calculate the total noise figure. The total noise factor is given as

  8. Noise reduction coefficient - Wikipedia

    en.wikipedia.org/wiki/Noise_reduction_coefficient

    The noise reduction coefficient (commonly abbreviated NRC) is a single number value ranging from 0.0 to 1.0 that describes the average sound absorption performance of a material. An NRC of 0.0 indicates the object does not attenuate mid-frequency sounds, but rather reflects sound energy.

  9. Acoustic attenuation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_attenuation

    In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity.