Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
If necessary, simplify the long division problem by moving the decimals of the divisor and dividend by the same number of decimal places, to the right (or to the left), so that the decimal of the divisor is to the right of the last digit. When doing long division, keep the numbers lined up straight from top to bottom under the tableau.
In binary arithmetic, division by two can be performed by a bit shift operation that shifts the number one place to the right. This is a form of strength reduction optimization. For example, 1101001 in binary (the decimal number 105), shifted one place to the right, is 110100 (the decimal number 52): the lowest order bit, a 1, is removed.
In abstract algebra, given a magma with binary operation ∗ (which could nominally be termed multiplication), left division of b by a (written a \ b) is typically defined as the solution x to the equation a ∗ x = b, if this exists and is unique. Similarly, right division of b by a (written b / a) is the solution y to the equation y ∗ a = b ...
This page was last edited on 13 September 2019, at 14:21 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Horner's method is a fast, code-efficient method for multiplication and division of binary numbers on a microcontroller with no hardware multiplier. One of the binary numbers to be multiplied is represented as a trivial polynomial, where (using the above notation) a i = 1 {\displaystyle a_{i}=1} , and x = 2 {\displaystyle x=2} .
An example of a decision problem is deciding with the help of an algorithm whether a given natural number is prime. Another example is the problem, "given two numbers x and y, does x evenly divide y?" A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem.
The binary GCD algorithm is particularly easy to implement and particularly efficient on binary computers. Its computational complexity is (( + )). The square in this complexity comes from the fact that division by 2 and subtraction take a time that is proportional to the number of bits of the input.