Search results
Results from the WOW.Com Content Network
There are three common naming conventions for specifying one of the two enantiomers (the absolute configuration) of a given chiral molecule: the R/S system is based on the geometry of the molecule; the (+)- and (−)- system (also written using the obsolete equivalents d- and l-) is based on its optical rotation properties; and the D/L system is based on the molecule's relationship to ...
In chemistry, chirality usually refers to molecules. Two mirror images of a chiral molecule are called enantiomers or optical isomers. Pairs of enantiomers are often designated as "right-", "left-handed" or, if they have no bias, "achiral". As polarized light passes through a chiral molecule, the plane of polarization, when viewed along the ...
Two enantiomers of a generic amino acid that are chiral (S)-Alanine (left) and (R)-alanine (right) in zwitterionic form at neutral pH. In chemistry, a molecule or ion is called chiral (/ ˈ k aɪ r əl /) if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes.
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis.It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereomeric) products in unequal amounts."
In chemistry, absolute configuration refers to the spatial arrangement of atoms within a molecular entity (or group) that is chiral, and its resultant stereochemical description. [1] Absolute configuration is typically relevant in organic molecules where carbon is bonded to four different substituents .
In chemistry, a racemic mixture or racemate (/ r eɪ ˈ s iː m eɪ t, r ə-, ˈ r æ s ɪ m eɪ t / [1]) is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule or salt. Racemic mixtures are rare in nature, but many compounds are produced industrially as racemates.
In biology, 19 of the 20 natural amino acids are homochiral, being L-chiral (left-handed), while sugars are D-chiral (right-handed). [1] Homochirality can also refer to enantiopure substances in which all the constituents are the same enantiomer (a right-handed or left-handed version of an atom or molecule), but some sources discourage this use ...
In medicinal chemistry and biochemistry, enantiomers are a special concern because they may possess distinct biological activity. Many preparative procedures afford a mixture of equal amounts of both enantiomeric forms. In some cases, the enantiomers are separated by chromatography using chiral stationary phases.