enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellulose 1,4-β-cellobiosidase (non-reducing end) - Wikipedia

    en.wikipedia.org/wiki/Cellulose_1,4-β...

    After above step, the process for creating ethanol is as follows: [9] 3. Separation of sugars from other plant material. 4. Microbial fermentation of the sugar solution to create alcohol. 5. Distillation to purify the products and produce roughly 9% pure alcohol 6. Further purification to bring the ethanol purity to roughly 99.5%

  3. Oligosaccharide nomenclature - Wikipedia

    en.wikipedia.org/wiki/Oligosaccharide_nomenclature

    An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]

  4. α-Glucosidase - Wikipedia

    en.wikipedia.org/wiki/Α-Glucosidase

    α-Glucosidase hydrolyzes terminal non-reducing (1→4)-linked α-glucose residues to release a single α-glucose molecule. [ 10 ] α-Glucosidase is a carbohydrate-hydrolase that releases α-glucose as opposed to β-glucose. β-Glucose residues can be released by glucoamylase, a functionally similar enzyme.

  5. Blood sugar regulation - Wikipedia

    en.wikipedia.org/wiki/Blood_sugar_regulation

    Blood sugar regulation is the process by which the levels of blood sugar, the common name for glucose dissolved in blood plasma, are maintained by the body within a narrow range. The regulation of glucose levels through Homeostasis. This tight regulation is referred to as glucose homeostasis.

  6. Glycoside hydrolase - Wikipedia

    en.wikipedia.org/wiki/Glycoside_hydrolase

    Glycoside hydrolases can also be classified as exo or endo acting, dependent upon whether they act at the (usually non-reducing) end or in the middle, respectively, of an oligo/polysaccharide chain. Glycoside hydrolases may also be classified by sequence or structure-based methods.

  7. β-Amylase - Wikipedia

    en.wikipedia.org/wiki/Β-Amylase

    Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time. During the ripening of fruit , β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit.

  8. Alpha-neoagaro-oligosaccharide hydrolase - Wikipedia

    en.wikipedia.org/wiki/Alpha-neoagaro...

    When neoagarohexaose is used as a substrate, the oligosaccharide is cleaved at the non-reducing end to produce 3,6-anhydro-L-galactose and agaropentaose, which is further hydrolysed to agarobiose and agarotriose.

  9. β-Glucuronidase - Wikipedia

    en.wikipedia.org/wiki/Β-Glucuronidase

    β-Glucuronidases are members of the glycosidase family of enzymes that catalyze breakdown of complex carbohydrates. [2] Human β-glucuronidase is a type of glucuronidase (a member of glycosidase Family 2) that catalyzes hydrolysis of β-D-glucuronic acid residues from the non-reducing end of mucopolysaccharides (also referred to as glycosaminoglycans) such as heparan sulfate.