Search results
Results from the WOW.Com Content Network
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
Various life forms found in nature exploit surface tension in different ways. Hu [8] and his colleagues looked at a few examples to create devices that mimic the abilities of their natural counterparts to walk on water, jump off the liquid interface, and climb menisci. Two such devices were a rendition of the water strider. Both devices ...
Cellular factors include reduced number and function of bone-marrow derived endothelial progenitor cells. [25] and reduced ability of those cells to form blood vessels. [26] Formation of additional capillaries and larger blood vessels (angiogenesis) is a major mechanism by which a cancer may help to enhance its own growth.
A wheeled buffalo figurine—probably a children's toy—from Magna Graecia in archaic Greece [1]. Several organisms are capable of rolling locomotion. However, true wheels and propellers—despite their utility in human vehicles—do not play a significant role in the movement of living things (with the exception of certain flagella, which work like corkscrews).
The investigations in capillarity stem back as far as Leonardo da Vinci, however the idea of capillary length was not developed until much later. Fundamentally the capillary length is a product of the work of Thomas Young and Pierre Laplace. They both appreciated that surface tension arose from cohesive forces between particles and that the ...
Kidney and nerve tissue cells can form memories much like brain cells, one new study has found. Another recent study says that memories of obesity stored in fat tissue may be partly responsible ...
Capillarity is the result of cohesion of water molecules and adhesion of those molecules to the solid material forming the void. As the edges of the material are brought closer together, such as in a very narrow path, the interaction causes the liquid to be drawn away from the original source.
Capillary waves (ripples) in water Ripples on Lifjord in Øksnes Municipality, Norway Capillary waves produced by droplet impacts on the interface between water and air.. A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension.