enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. London dispersion force - Wikipedia

    en.wikipedia.org/wiki/London_dispersion_force

    The "explanation" of the dispersion force as the interaction between two such dipoles was invented after London arrived at the proper quantum mechanical theory. The authoritative work [ 13 ] contains a criticism of the instantaneous dipole model [ 14 ] and a modern and thorough exposition of the theory of intermolecular forces.

  3. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    For an ideal string, the dispersion relation can be written as =, where T is the tension force in the string, and μ is the string's mass per unit length. As for the case of electromagnetic waves in vacuum, ideal strings are thus a non-dispersive medium, i.e. the phase and group velocities are equal and independent (to first order) of vibration ...

  4. Free particle - Wikipedia

    en.wikipedia.org/wiki/Free_particle

    A free particle with mass in non-relativistic quantum mechanics is described by the free Schrödinger equation: (,) = (,). where ψ is the wavefunction of the particle at position r and time t.

  5. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.

  6. Particle in a box - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_box

    Some trajectories of a particle in a box according to Newton's laws of classical mechanics (A), and according to the Schrödinger equation of quantum mechanics (B–F). In (B–F), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of the wave function.

  7. Wave packet - Wikipedia

    en.wikipedia.org/wiki/Wave_packet

    Quantum mechanics describes the nature of atomic and subatomic systems using Schrödinger's wave equation. The classical limit of quantum mechanics and many formulations of quantum scattering use wave packets formed from various solutions to this equation. Quantum wave packet profiles change while propagating; they show dispersion.

  8. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. [1]

  9. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    In the phase space formulation of quantum mechanics, eigenstates of the quantum harmonic oscillator in several different representations of the quasiprobability distribution can be written in closed form. The most widely used of these is for the Wigner quasiprobability distribution.