Search results
Results from the WOW.Com Content Network
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 [4])
If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid, size of the body, expressed in terms of its wetted area A, and; drag force F d.
Combining this with the vertical g-force in the stationary case using the Pythagorean theorem yields a g-force of 5.4 g. The g-force or gravitational force equivalent is a mass-specific force (force per unit mass), expressed in units of standard gravity (symbol g or g 0, not to be confused with "g", the symbol for grams).
Blue line: drag force; red line: inertia force; black line: total force according to the Morison equation. Note that the inertia force is in front of the phase of the drag force: the flow velocity is a sine wave, while the local acceleration is a cosine wave as a function of time.
Then the attraction force vector onto a sample mass can be expressed as: = Here is the frictionless, free-fall acceleration sustained by the sampling mass under the attraction of the gravitational source. It is a vector oriented toward the field source, of magnitude measured in acceleration units.
In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.
A static balance (sometimes called a force balance [2] [3]) occurs when the inertial axis of a rotating mass is displaced from and parallel to the axis of rotation.Static unbalances can occur more frequently in disk-shaped rotors because the thin geometric profile of the disk allows for an uneven distribution of mass with an inertial axis that is nearly parallel to the axis of rotation.