enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The circular hull of the excircles is internally tangent to each of the excircles and is thus an Apollonius circle. [26] The radius of this Apollonius circle is + where is the incircle radius and is the semiperimeter of the triangle. [27]

  3. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  4. Inscribed figure - Wikipedia

    en.wikipedia.org/wiki/Inscribed_figure

    Every circle has an inscribed triangle with any three given angle measures (summing of course to 180°), and every triangle can be inscribed in some circle (which is called its circumscribed circle or circumcircle). Every triangle has an inscribed circle, called the incircle.

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    About every triangle a unique circle, called the circumcircle, can be circumscribed such that it goes through each of the triangle's three vertices. [20] A tangential polygon, such as a tangential quadrilateral, is any convex polygon within which a circle can be inscribed that is tangent to each side of the polygon. [21]

  6. Law of cotangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_cotangents

    Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = ⁠ a + b + c / 2 ⁠, and r is the radius of the inscribed circle, the law of cotangents states that

  7. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius .

  8. Circumscribed circle - Wikipedia

    en.wikipedia.org/wiki/Circumscribed_circle

    In geometry, a circumscribed circle for a set of points is a circle passing through each of them. Such a circle is said to circumscribe the points or a polygon formed from them; such a polygon is said to be inscribed in the circle. Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle.

  9. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The midpoints of the three sides and the feet of the three altitudes all lie on a single circle, the triangle's nine-point circle. [27] The remaining three points for which it is named are the midpoints of the portion of altitude between the vertices and the orthocenter. The radius of the nine-point circle is half that of the circumcircle.