enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  4. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643. Frederick Soddy's 1936 poem The Kiss Precise summarizes the theorem in terms of the bends (signed inverse radii) of the four circles:

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using Euler's formula. Sum

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β {\displaystyle \alpha +\beta } .

  7. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Constructing a tangent using Thales's theorem. Thales's theorem can be used to construct the tangent to a given circle that passes through a given point. In the figure at right, given circle k with centre O and the point P outside k, bisect OP at H and draw the circle of radius OH with centre H.

  8. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The unit circle centered at the origin in the Euclidean plane is defined by the equation: [2] x 2 + y 2 = 1. {\displaystyle x^{2}+y^{2}=1.} Given an angle θ , there is a unique point P on the unit circle at an anticlockwise angle of θ from the x -axis, and the x - and y -coordinates of P are: [ 3 ]

  9. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    Using derivatives, the equation of the tangent line can be stated as follows: = + ′ (). Calculus provides rules for computing the derivatives of functions that are given by formulas, such as the power function, trigonometric functions, exponential function, logarithm, and their various combinations. Thus, equations of the tangents to graphs ...