Search results
Results from the WOW.Com Content Network
The large bell- or cone-shaped nozzle extension beyond the throat gives the rocket engine its characteristic shape. The exit static pressure of the exhaust jet depends on the chamber pressure and the ratio of exit to throat area of the nozzle. As exit pressure varies from the ambient (atmospheric) pressure, a choked nozzle is said to be
The F-1 engine is the most powerful single-nozzle liquid-fueled rocket engine ever flown. The M-1 rocket engine was designed to have more thrust, but it was only tested at the component level. The later developed RD-170 is much more stable, technologically more advanced , more efficient and produces more thrust, but uses four nozzles fed by a ...
The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lb f) of thrust per engine in vacuum.
The engine's nozzle is 121 in (3.1 m) long with a diameter of 10.3 inches (0.26 m) at its throat and 90.7 inches (2.30 m) at its exit. [11] The nozzle is a bell-shaped extension bolted to the main combustion chamber, referred to as a de Laval nozzle. The RS-25 nozzle has an unusually large expansion ratio (about 69:1) for the chamber pressure. [12]
Engine Origin Designer Vehicle Status Use Propellant Power cycle Specific impulse (s) [a] Thrust (N) [a] Chamber pressure (bar) Mass (kg) Thrust: weight ratio [b] Oxidiser: fuel ratio
The thrust chamber was all-aluminum, and regeneratively cooled by oxidizer flowing through gun-drilled passages in the combustion chamber and throat walls. The nozzle was a titanium radiatively cooled extension. The engine was mounted on a hydraulic actuated gimbal which enabled thrust vectoring to control pitch and yaw.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The RD-0126 "Yastreb" (РД-0126 «Ястреб») was a liquid-fuel cryogenic rocket engine burning liquid hydrogen and liquid oxygen, developed by KBKhA Kosberg in Voronezh, Russia. The RD-0126 variant had a conventional de Laval nozzle , while the RD-0126E (РД-0126Э) was designed and constructed with an expansion-deflection nozzle .