enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonlinear system - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system

    In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]

  3. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.

  4. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  5. Inverse problem - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem

    Non-linear inverse problems constitute an inherently more difficult family of inverse problems. Here the forward map is a non-linear operator. Modeling of physical phenomena often relies on the solution of a partial differential equation (see table above except for gravity law): although these partial differential equations are often linear ...

  6. Quasilinearization - Wikipedia

    en.wikipedia.org/wiki/Quasilinearization

    The nonlinear equation may then be approximated as N(y) = N(y k) + L(y k)( y - y k) + O( y-y k) 2, taking k=0. Setting this equation to zero and imposing zero boundary conditions and ignoring higher-order terms gives the linear equation L(y k)( y - y k) = - N(y k). The solution of this linear equation (with zero boundary conditions) might be ...

  7. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  8. Nonlinear partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_partial...

    In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear terms. They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture .

  9. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.