Search results
Results from the WOW.Com Content Network
F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: r = A ⋅ e − Δ H / ( R ⋅ T ) {\displaystyle r=A\cdot e^{-\Delta H/(R\cdot T)}} Where r is the creep process rate, A is a constant, R is the universal gas constant , T is the absolute temperature , and Δ H {\displaystyle \Delta ...
In practice, creep during drying is inseparable from shrinkage. The rate of creep increases with the rate of change of pore humidity (i.e., relative vapor pressure in the pores). For small specimen thickness, the creep during drying greatly exceeds the sum of the drying shrinkage at no load and the creep of a loaded sealed specimen (Fig. 1 bottom).
The phenomenological equation which describes Harper–Dorn creep is = where ρ 0 is dislocation density (constant for Harper–Dorn creep), D v is the diffusivity through the volume of the material, G is the shear modulus and b is the Burgers vector, σ s, and n is the stress exponent which varies between 1 and 3.
L. M. Kachanov [5] and Y. N. Rabotnov [6] suggested the following evolution equations for the creep strain ε and a lumped damage state variable ω: ˙ = ˙ ˙ = ˙ where ˙ is the creep strain rate, ˙ is the creep-rate multiplier, is the applied stress, is the creep stress exponent of the material of interest, ˙ is the rate of damage accumulation, ˙ is the damage-rate multiplier, and is ...
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
Constitutive equations for the type of mechanism have been developed for each deformation mechanism and are used in the construction of the maps. The theoretical shear strength of the material is independent of temperature and located along the top of the map, with the regimes of plastic deformation mechanisms below it.
Creep is the tendency of a solid material to slowly move or deform permanently under constant stresses. Creep tests measure the strain response due to a constant stress as shown in Figure 3. The classical creep curve represents the evolution of strain as a function of time in a material subjected to uniaxial stress at a constant temperature.
In materials science, Coble creep, a form of diffusion creep, is a mechanism for deformation of crystalline solids. Contrasted with other diffusional creep mechanisms, Coble creep is similar to Nabarro–Herring creep in that it is dominant at lower stress levels and higher temperatures than creep mechanisms utilizing dislocation glide. [1]