enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    The process of obtaining solution of (x, y) of an Euler spiral can thus be described as: Map L of the original Euler spiral by multiplying with factor a to L′ of the normalized Euler spiral; Find (x′, y′) from the Fresnel integrals; and; Map (x′, y′) to (x, y) by scaling up (denormalize) with factor ⁠ 1 / a ⁠. Note that ⁠ 1 / a ...

  3. Fresnel integral - Wikipedia

    en.wikipedia.org/wiki/Fresnel_integral

    The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.

  4. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Fresnel diffraction of circular aperture, plotted with Lommel functions. This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave.

  5. List of spirals - Wikipedia

    en.wikipedia.org/wiki/List_of_spirals

    For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by ( − θ {\displaystyle -\theta } ) for plotting.

  6. Track transition curve - Wikipedia

    en.wikipedia.org/wiki/Track_transition_curve

    The Euler spiral provides the shortest transition subject to a given limit on the rate of change of the track superelevation (i.e. the twist of the track). However, as has been recognized for a long time, it has undesirable dynamic characteristics due to the large (conceptually infinite) roll acceleration and rate of change of centripetal ...

  7. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    The arbitrary assumptions made by Fresnel to arrive at the Huygens–Fresnel equation emerge automatically from the mathematics in this derivation. [9] A simple example of the operation of the principle can be seen when an open doorway connects two rooms and a sound is produced in a remote corner of one of them.

  8. Arago spot - Wikipedia

    en.wikipedia.org/wiki/Arago_spot

    Notation for calculating the wave amplitude at point P 1 from a spherical point source at P 0.. At the heart of Fresnel's wave theory is the Huygens–Fresnel principle, which states that every unobstructed point of a wavefront becomes the source of a secondary spherical wavelet and that the amplitude of the optical field E at a point on the screen is given by the superposition of all those ...

  9. Zone plate - Wikipedia

    en.wikipedia.org/wiki/Zone_plate

    A zone plate consists of a set of concentric rings, known as Fresnel zones, which alternate between being opaque and transparent. Light hitting the zone plate will diffract around the opaque zones. The zones can be spaced so that the diffracted light constructively interferes at the desired focus, creating an image there.