Search results
Results from the WOW.Com Content Network
Newton's form has the simplicity that the new points are always added at one end: Newton's forward formula can add new points to the right, and Newton's backward formula can add new points to the left. The accuracy of polynomial interpolation depends on how close the interpolated point is to the middle of the x values of the set of points used ...
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.
This expression is Newton's difference quotient (also known as a first-order divided difference). The slope of this secant line differs from the slope of the tangent line by an amount that is approximately proportional to h. As h approaches zero, the slope of the secant line approaches the slope of the tangent line.
The principle of a difference engine is Newton's method of divided differences. If the initial value of a polynomial (and of its finite differences) is calculated by some means for some value of X, the difference engine can calculate any number of nearby values, using the method generally known as the method of finite differences.
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points.
Since the relationship between divided differences and backward differences is given as: [citation needed] [,, …,] =! (), taking = (), if the representation of x in the previous sections was instead taken to be = +, the Newton backward interpolation formula is expressed as: () = (+) = = () (). which is the interpolation of all points before .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The number of pieces of information, function values and derivative values, must add up to . Hermite's method of interpolation is closely related to the Newton's interpolation method, in that both can be derived from the calculation of divided differences. However, there are other methods for computing a Hermite interpolating polynomial.