Search results
Results from the WOW.Com Content Network
Graphene is the only form of carbon (or solid material) in which every atom is available for chemical reaction from two sides (due to the 2D structure). Atoms at the edges of a graphene sheet have special chemical reactivity. Graphene has the highest ratio of edge atoms of any allotrope. Defects within a sheet increase its chemical reactivity. [1]
Graphene (/ ˈ ɡ r æ f iː n /) [1] is a carbon allotrope consisting of a single layer of atoms arranged in a honeycomb planar nanostructure. [2] [3] The name "graphene" is derived from "graphite" and the suffix -ene, indicating the presence of double bonds within the carbon structure.
Carbon nanotubes, also called buckytubes, are cylindrical carbon molecules with novel properties that make them potentially useful in a wide variety of applications (e.g., nano-electronics, optics, materials applications, etc.). They exhibit extraordinary strength, unique electrical properties, and are efficient conductors of heat.
Box-shaped graphene (BSG) nanostructure is an example of 3D nanomaterial. [38] BSG nanostructure has appeared after mechanical cleavage of pyrolytic graphite . This nanostructure is a multilayer system of parallel hollow nanochannels located along the surface and having quadrangular cross-section.
The electronic properties of graphene are significantly influenced by the supporting substrate. [59] [60] The Si(100)/H surface does not perturb graphene's electronic properties, whereas the interaction between it and the clean Si(100) surface changes its electronic states significantly. This effect results from the covalent bonding between C ...
This is a list of notable computer programs that are used to model nanostructures at the levels of classical mechanics [1] and quantum mechanics. Furiousatoms [2] - a powerful software for molecular modelling and visualization; Aionics.io [3] - a powerful platform for nanoscale modelling; Ascalaph Designer; Atomistix ToolKit and Virtual NanoLab ...
The name of Dirac cone comes from the Dirac equation that can describe relativistic particles in quantum mechanics, proposed by Paul Dirac. Isotropic Dirac cones in graphene were first predicted by P. R. Wallace in 1947 [ 6 ] and experimentally observed by the Nobel Prize laureates Andre Geim and Konstantin Novoselov in 2005.
So far, the graphene plasmonic effects have been demonstrated for different applications ranging from light modulation [15] [16] to biological/chemical sensing. [17] [18] [19] High-speed photodetection at 10 Gbit/s based on graphene and 20-fold improvement on the detection efficiency through graphene/gold nanostructure were also reported. [20]