enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    In mathematics and computer science, a string metric (also known as a string similarity metric or string distance function) is a metric that measures distance ("inverse similarity") between two text strings for approximate string matching or comparison and in fuzzy string searching.

  3. Jaro–Winkler distance - Wikipedia

    en.wikipedia.org/wiki/Jaro–Winkler_distance

    The higher the Jaro–Winkler distance for two strings is, the less similar the strings are. The score is normalized such that 0 means an exact match and 1 means there is no similarity. The original paper actually defined the metric in terms of similarity, so the distance is defined as the inversion of that value (distance = 1 − similarity).

  4. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

  5. Damerau–Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Damerau–Levenshtein_distance

    Presented here are two algorithms: the first, [8] simpler one, computes what is known as the optimal string alignment distance or restricted edit distance, [7] while the second one [9] computes the Damerau–Levenshtein distance with adjacent transpositions. Adding transpositions adds significant complexity.

  6. Dice-Sørensen coefficient - Wikipedia

    en.wikipedia.org/wiki/Dice-Sørensen_coefficient

    When taken as a string similarity measure, the coefficient may be calculated for two strings, x and y using bigrams as follows: [11] = + where n t is the number of character bigrams found in both strings, n x is the number of bigrams in string x and n y is the number of bigrams in string y. For example, to calculate the similarity between:

  7. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    Similarity between strings. For comparing strings, there are various measures of string similarity that can be used. Some of these methods include edit distance, Levenshtein distance, Hamming distance, and Jaro distance. The best-fit formula is dependent on the requirements of the application.

  8. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    A similar algorithm for approximate string matching is the bitap algorithm, also defined in terms of edit distance. Levenshtein automata are finite-state machines that recognize a set of strings within bounded edit distance of a fixed reference string. [4]

  9. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...