enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Liquid - Wikipedia

    en.wikipedia.org/wiki/Liquid

    For a body of water open to the air, would be the atmospheric pressure. Static liquids in uniform gravitational fields also exhibit the phenomenon of buoyancy, where objects immersed in the liquid experience a net force due to the pressure variation with depth. The magnitude of the force is equal to the weight of the liquid displaced by the ...

  3. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    h is the depth of the puddle in centimeters or meters. γ is the surface tension of the liquid in dynes per centimeter or newtons per meter. g is the acceleration due to gravity and is equal to 980 cm/s 2 or 9.8 m/s 2; ρ is the density of the liquid in grams per cubic centimeter or kilograms per cubic meter

  4. Hydraulic roughness - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_roughness

    The value of Manning's n is affected by many variables. Factors like suspended load, sediment grain size, presence of bedrock or boulders in the stream channel, variations in channel width and depth, and overall sinuosity of the stream channel can all affect Manning's n value. For instance, a narrow, rocky channel with irregular obstructions ...

  5. Hydrostatics - Wikipedia

    en.wikipedia.org/wiki/Hydrostatics

    where ρ is the density of the fluid, g is the acceleration due to gravity, and V is the volume of fluid directly above the curved surface. [8] In the case of a ship, for instance, its weight is balanced by pressure forces from the surrounding water, allowing it to float. If more cargo is loaded onto the ship, it would sink more into the water ...

  6. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    For a fixed water depth, long waves (with large wavelength) propagate faster than shorter waves. In the left figure, it can be seen that shallow water waves, with wavelengths λ much larger than the water depth h, travel with the phase velocity [2] = with g the acceleration by gravity and c p the phase speed. Since this shallow-water phase ...

  7. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Nevertheless, he had the opportunity to estimate the order of magnitude of the constant when he surmised that "the mean density of the earth might be five or six times as great as the density of water", which is equivalent to a gravitational constant of the order: [14] G ≈ (6.7 ± 0.6) × 10 −11 m 3 ⋅kg −1 ⋅s −2

  8. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    Here η is the total fluid column height (instantaneous fluid depth as a function of x, y and t), and the 2D vector (u,v) is the fluid's horizontal flow velocity, averaged across the vertical column. Further g is acceleration due to gravity and ρ is the fluid density. The first equation is derived from mass conservation, the second two from ...

  9. Buoyancy - Wikipedia

    en.wikipedia.org/wiki/Buoyancy

    Buoyancy (/ ˈ b ɔɪ ən s i, ˈ b uː j ən s i /), [1] [2] or upthrust is a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid.