Search results
Results from the WOW.Com Content Network
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series .
Aggregate functions present a bottleneck, because they potentially require having all input values at once.In distributed computing, it is desirable to divide such computations into smaller pieces, and distribute the work, usually computing in parallel, via a divide and conquer algorithm.
Wes McKinney is an American software developer and businessman. He is the creator and "Benevolent Dictator for Life" (BDFL) of the open-source pandas package for data analysis in the Python programming language, and has also authored three versions of the reference book Python for Data Analysis.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
An Aggregate pattern can refer to concepts in either statistics or computer programming. Both uses deal with considering a large case as composed of smaller, simpler, pieces. Both uses deal with considering a large case as composed of smaller, simpler, pieces.
Programming languages and libraries suited to work with tabular data contain functions that allow the creation and manipulation of pivot tables. Python data analysis toolkit pandas has the function pivot_table [16] and the xs method useful to obtain sections of pivot tables. [citation needed]
An aggregate is a type of summary used in dimensional models of data warehouses to shorten the time it takes to provide answers to typical queries on large sets of data. The reason why aggregates can make such a dramatic increase in the performance of a data warehouse is the reduction of the number of rows to be accessed when responding to a query.
This is a form of caching the results of a query, similar to memoization of the value of a function in functional languages, and it is sometimes described as a form of precomputation. [2] [3] As with other forms of precomputation, database users typically use materialized views for performance reasons, i.e. as a form of optimization. [4]