Search results
Results from the WOW.Com Content Network
In most projections, scale varies with latitude, so on small scale maps, covering large areas and a wide range of latitudes, the linear scale must show the scale for the range of latitudes covered by the map. One of these is shown below. Since most nautical charts are constructed using the Mercator projection whose scale varies substantially ...
at latitude 45° the scale factor is k = sec 45° = 1.41, at latitude 60° the scale factor is k = sec 60° = 2, at latitude 80° the scale factor is k = sec 80° = 5.76, at latitude 85° the scale factor is k = sec 85° = 11.5. The area scale factor is the product of the parallel and meridian scales hk = sec 2 φ.
Unlike a linear scale where each unit of distance corresponds to the same increment, on a logarithmic scale each unit of length is a multiple of some base value raised to a power, and corresponds to the multiplication of the previous value in the scale by the base value. In common use, logarithmic scales are in base 10 (unless otherwise specified).
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right). In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes.
For example, aligning the rightmost 1 on the C scale with 2 on the LL2 scale, 3 on the C scale lines up with 8 on the LL3 scale. To extract a cube root using a slide rule with only C/D and A/B scales, align 1 on the B cursor with the base number on the A scale (taking care as always to distinguish between the lower and upper halves of the A scale).
Here two scales represent known values and the third is the scale where the result is read off. The simplest such equation is u 1 + u 2 + u 3 = 0 for the three variables u 1 , u 2 and u 3 . An example of this type of nomogram is shown on the right, annotated with terms used to describe the parts of a nomogram.
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.