Search results
Results from the WOW.Com Content Network
The AVL tree is named after its two Soviet inventors, Georgy Adelson-Velsky and Evgenii Landis, who published it in their 1962 paper "An algorithm for the organization of information". [2] It is the first self-balancing binary search tree data structure to be invented. [3]
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
Binary tree sort, in particular, is likely to be slower than merge sort, quicksort, or heapsort, because of the tree-balancing overhead as well as cache access patterns.) Self-balancing BSTs are flexible data structures, in that it's easy to extend them to efficiently record additional information or perform new operations.
In 2016, Blelloch et al. formally proposed the join-based algorithms, and formalized the join algorithm for four different balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps. In the same work they proved that Adams' algorithms on union, intersection and difference are work-optimal on all the four balancing schemes.
Trees are used throughout computer science and many different types of trees – binary search trees, AVL trees, red–black trees, and 2–3 trees to name just a small few – have been developed to properly store, access, and manipulate data while maintaining their structure. Trees are a principal data structure for dictionary implementation.
The interval tree data structure can be generalized to a higher dimension with identical query and construction time and () space. First, a range tree in N {\displaystyle N} dimensions is constructed that allows efficient retrieval of all intervals with beginning and end points inside the query region R {\displaystyle R} .
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.