Search results
Results from the WOW.Com Content Network
The midpoints of the sides of an arbitrary quadrilateral form a parallelogram. If the quadrilateral is convex or concave (not complex), then the area of the parallelogram is half the area of the quadrilateral. If one introduces the concept of oriented areas for n-gons, then this area equality also holds for complex quadrilaterals. [2]
In geometry, the midpoint polygon of a polygon P is the polygon whose vertices are the midpoints of the edges of P. [1] [2] It is sometimes called the Kasner polygon after Edward Kasner, who termed it the inscribed polygon "for brevity". [3] [4] The medial triangle The Varignon parallelogram
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...
Additionally, the four midpoints (grey) and the four feet of the maltitudes (red) are cocyclic on the 8-point-circle. A convex quadrilateral is orthodiagonal if and only if its Varignon parallelogram (whose vertices are the midpoints of its sides) is a rectangle. [6]
Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the ...
In geometry, the Newton–Gauss line (or Gauss–Newton line) is the line joining the midpoints of the three diagonals of a complete quadrilateral. The midpoints of the two diagonals of a convex quadrilateral with at most two parallel sides are distinct and thus determine a line, the Newton line. If the sides of such a quadrilateral are ...
If the quadrilateral is a parallelogram, then the midpoints of the diagonals coincide so that the connecting line segment has length 0. In addition the parallel sides are of equal length, hence Euler's theorem reduces to + = + which is the parallelogram law.