enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel axis theorem - Wikipedia

    en.wikipedia.org/wiki/Parallel_axis_theorem

    The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    When a body is free to rotate around an axis, torque must be applied to change its angular momentum.The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body.

  4. Falling cat problem - Wikipedia

    en.wikipedia.org/wiki/Falling_cat_problem

    The falling cat problem has elicited interest from scientists including George Gabriel Stokes, James Clerk Maxwell, and Étienne-Jules Marey.In a letter to his wife, Katherine Mary Clerk Maxwell, Maxwell wrote, "There is a tradition in Trinity that when I was here I discovered a method of throwing a cat so as not to light on its feet, and that I used to throw cats out of windows.

  5. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  6. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Angular momentum's dependence on position and shape is reflected in its units versus linear momentum: kg⋅m 2 /s or N⋅m⋅s for angular momentum versus kg⋅m/s or N⋅s for linear momentum. When calculating angular momentum as the product of the moment of inertia times the angular velocity, the angular velocity must be expressed in radians ...

  7. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    When Newton's laws are applied to rotating extended bodies, they lead to new quantities that are analogous to those invoked in the original laws. The analogue of mass is the moment of inertia, the counterpart of momentum is angular momentum, and the counterpart of force is torque. Angular momentum is calculated with respect to a reference point ...