Search results
Results from the WOW.Com Content Network
Cytidine Monophosphate: CMP-β-D-Neu5Ac; in humans, it is the only nucleotide sugar in the form of nucleotide monophosphate. Cytidine Diphosphate: CDP-D-Ribitol (i.e. CMP-[ribitol phosphate]); [8] though not a sugar, the phosphorylated sugar alcohol ribitol phosphate is incorporated into matriglycan as if it were a monosaccharide.
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.
In nucleotide sugar metabolism a group of biochemicals known as nucleotide sugars act as donors for sugar residues in the glycosylation reactions that produce polysaccharides. [1] They are substrates for glycosyltransferases. [2] The nucleotide sugars are also intermediates in nucleotide sugar interconversions that produce some of the activated ...
UDP-glucose is used in nucleotide sugar metabolism as an activated form of glucose, a substrate for enzymes called glucosyltransferases. [1]UDP-glucose is a precursor of glycogen and can be converted into UDP-galactose and UDP-glucuronic acid, which can then be used as substrates by the enzymes that make polysaccharides containing galactose and glucuronic acid.
The general structure of a ribonucleotide consists of a phosphate group, a ribose sugar group, and a nucleobase, in which the nucleobase can either be adenine, guanine, cytosine, or uracil. Without the phosphate group, the composition of the nucleobase and sugar is known as a nucleoside.
At the sides of nucleic acid structure, phosphate molecules successively connect the two sugar-rings of two adjacent nucleotide monomers, thereby creating a long chain biomolecule. These chain-joins of phosphates with sugars (ribose or deoxyribose) create the "backbone" strands for a single- or double helix biomolecule.
A nucleotide is an organic molecule consisting of a nitrogenous heterocyclic nucleobase (a purine or a pyrimidine), a pentose sugar (deoxyribose in DNA or ribose in RNA), and a phosphate or polyphosphate group.
Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing (adenine and thymine, guanine and cytosine) occurs naturally when hydrogen bonds form between the nucleotide bases.