Search results
Results from the WOW.Com Content Network
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Some models built via machine learning algorithms have over 90% accuracy in distinguishing between spam and legitimate emails. [16] These models can be refined using new data and evolving spam tactics. Machine learning also analyzes traits such as sender behavior, email header information, and attachment types, potentially enhancing spam detection.
Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...
Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".
The concept of algorithmic management can be broadly defined as the delegation of managerial functions to algorithmic and automated systems. [1] Algorithmic management has been enabled by "recent advances in digital technologies" which allow for the real-time and "large-scale collection of data" which is then used to "improve learning algorithms that carry out learning and control functions ...
Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...
In other words, it is an algorithm that takes as input a finite sequence of training samples and outputs a function from to . Typical learning algorithms include empirical risk minimization, without or with Tikhonov regularization.
Pioneering machine learning research is conducted using simple algorithms. 1960s: Bayesian methods are introduced for probabilistic inference in machine learning. [1] 1970s 'AI winter' caused by pessimism about machine learning effectiveness. 1980s: Rediscovery of backpropagation causes a resurgence in machine learning research. 1990s