Search results
Results from the WOW.Com Content Network
Semi-log plot of solutions of + + = for integer , , and , and .Green bands denote values of proven not to have a solution.. In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum.
The Fermat cubic, in which the sum of three cubes equals another cube, has a general solution. The power sum symmetric polynomial is a building block for symmetric polynomials. The sum of the reciprocals of all perfect powers including duplicates (but not including 1) equals 1.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers.
The sum of the reciprocals of all the Fermat numbers (numbers of the form + ) (sequence A051158 in the OEIS) is irrational. The sum of the reciprocals of the pronic numbers (products of two consecutive integers) (excluding 0) is 1 (see Telescoping series).
The sum is taken over all combinations of nonnegative integer indices k 1 through k m such that the sum of all k i is n. That is, for each term in the expansion, the exponents of the x i must add up to n. [1] [a] In the case m = 2, this statement reduces to that of the binomial theorem. [1]
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]