Search results
Results from the WOW.Com Content Network
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...
The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications.
Pages in category "Millennium Prize Problems" The following 8 pages are in this category, out of 8 total. ... Navier–Stokes existence and smoothness; P.
The numerical solution of the Navier–Stokes equations for turbulent flow is extremely difficult, and due to the significantly different mixing-length scales that are involved in turbulent flow, the stable solution of this requires such a fine mesh resolution that the computational time becomes significantly infeasible for calculation or ...
For nonlinear equations these questions are in general very hard: for example, the hardest part of Yau's solution of the Calabi conjecture was the proof of existence for a Monge–Ampere equation. The open problem of existence (and smoothness) of solutions to the Navier–Stokes equations is one of the seven Millennium Prize problems in ...
Millennium Prize Problems; Birch and Swinnerton-Dyer conjecture; Hodge conjecture; Navier–Stokes existence and smoothness; P versus NP problem; Poincaré conjecture (solved) Riemann hypothesis; Yang–Mills existence and mass gap
Under what conditions do smooth solutions exist for the Navier–Stokes equations, which are the equations that describe the flow of a viscous fluid? This problem, for an incompressible fluid in three dimensions, is also one of the Millennium Prize Problems in mathematics. [66]
In the above equation stoke assume that at, non-stationary Navier Stokes problem converge towards the solution of the correspondent stationary problem. This solution will not depend upon the function . If this is used for the above equation consisting of Navier stokes equation and continuity equations with time derivative of pressure, then the ...