Search results
Results from the WOW.Com Content Network
The grey area is the inner mitochondrial membrane. Q represents the ubiquinone form of CoQ, and QH 2 represents the ubiquinol ( dihydroxyquinone ) form. The Q cycle (named for quinol ) describes a series of sequential oxidation and reduction of the lipophilic electron carrier Coenzyme Q (CoQ) between the ubiquinol and ubiquinone forms.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Osteocytes, the most common cell type within mature cortical bone, actively participate in the growth and maintenance of TCVs through the transfer of mitochondria to endothelial cells. Scanning electron microscopy images have revealed that osteocytes possess numerous dendritic processes with expanded, endfoot-like structures. These endfeet ...
According to the chemiosmotic coupling hypothesis, proposed by Nobel Prize in Chemistry winner Peter D. Mitchell, the electron transport chain and oxidative phosphorylation are coupled by a proton gradient across the inner mitochondrial membrane. The efflux of protons from the mitochondrial matrix creates an electrochemical gradient (proton ...
An anabolic pathway is a biosynthetic pathway, meaning that it combines smaller molecules to form larger and more complex ones. [ 10 ] : 570 An example is the reversed pathway of glycolysis, otherwise known as gluconeogenesis , which occurs in the liver and sometimes in the kidney to maintain proper glucose concentration in the blood and supply ...
In mitochondria, energy released by the electron transport chain is used to move protons from the mitochondrial matrix (N side) to the intermembrane space (P side). Moving the protons out of the mitochondrion creates a lower concentration of positively charged protons inside it, resulting in excess negative charge on the inside of the membrane.
In the mitochondria, electrons are transferred within the intermembrane space by the water-soluble electron transfer protein cytochrome c. [8] This carries only electrons, and these are transferred by the reduction and oxidation of an iron atom that the protein holds within a heme group in its structure.
Endothelium lines the inner wall of vessels, shown here. Microscopic view showing endothelium (at top) inside the heart. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the vessel wall. This forms a barrier between vessels and tissues and control the flow of substances and fluid into and out of ...