Search results
Results from the WOW.Com Content Network
Energy shares the same unit of measurement with work (Joules) because the energy from the object doing work is transferred to the other objects it interacts with when work is being done. [16] The work–energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body ...
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
Work and thus energy is frame dependent. For example, consider a ball being hit by a bat. In the center-of-mass reference frame, the bat does no work on the ball. But, in the reference frame of the person swinging the bat, considerable work is done on the ball. The total energy of a system is sometimes called the Hamiltonian, after William ...
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
Work and heat express physical processes of supply or removal of energy, while the internal energy is a mathematical abstraction that keeps account of the changes of energy that befall the system. The term Q {\displaystyle Q} is the quantity of energy added or removed as heat in the thermodynamic sense, not referring to a form of energy within ...
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...
Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule [1] and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units
An example of a mechanical system: A satellite is orbiting the Earth influenced only by the conservative gravitational force; its mechanical energy is therefore conserved. The satellite's acceleration is represented by the green vector and its velocity is represented by the red vector.