enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk. See motion graphs and derivatives. A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another:

  4. Position (geometry) - Wikipedia

    en.wikipedia.org/wiki/Position_(geometry)

    For a position vector r that is a function of time t, the time derivatives can be computed with respect to t. These derivatives have common utility in the study of kinematics , control theory , engineering and other sciences.

  5. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    The second time derivative of a vector field in cylindrical coordinates is given by: ¨ = ^ (¨ ¨ ˙ ˙ ˙) + ^ (¨ + ¨ + ˙ ˙ ˙) + ^ ¨ To understand this expression, A is substituted for P , where P is the vector ( ρ , φ , z ).

  6. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    The position vector r k of particle k is a function of all the n generalized coordinates ... The corresponding time derivatives of q are the generalized velocities, ...

  7. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)

  8. Rotating reference frame - Wikipedia

    en.wikipedia.org/wiki/Rotating_reference_frame

    This result is the same as found using a vector cross product with the rotation vector ... Acceleration is the second time derivative of position, or the first time ...

  9. Absement - Wikipedia

    en.wikipedia.org/wiki/Absement

    Absement changes as an object remains displaced and stays constant as the object resides at the initial position. It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement.