enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mesomeric effect - Wikipedia

    en.wikipedia.org/wiki/Mesomeric_effect

    The mesomeric effect as a result of p-orbital overlap (resonance) has absolutely no effect on this inductive effect, as the inductive effect has purely to do with the electronegativity of the atoms and their topology in the molecule (which atoms are connected to which). Specifically the inductive effect is the tendency for the substituents to ...

  3. Mössbauer effect - Wikipedia

    en.wikipedia.org/wiki/Mössbauer_effect

    The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by Rudolf Mössbauer in 1958. It involves the resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei bound in a solid. Its main application is in Mössbauer spectroscopy.

  4. Kozai mechanism - Wikipedia

    en.wikipedia.org/wiki/Kozai_mechanism

    It also termed an effect, oscillations, cycles, or resonance. This effect causes the orbit's argument of pericenter to oscillate about a constant value, which in turn leads to a periodic exchange between its eccentricity and inclination. The process occurs on timescales much longer than the orbital periods.

  5. Pi electron donor-acceptor - Wikipedia

    en.wikipedia.org/wiki/Pi_electron_donor-acceptor

    The pEDA parameter (pi electron donor-acceptor) is a pi-electron substituent effect scale, described also as mesomeric or resonance effect. There is also a complementary scale - sEDA. The more positive is the value of pEDA the more pi-electron donating is a substituent.

  6. Electrophilic aromatic directing groups - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    In general, the resonance effect of elements in the third period and beyond is relatively weak. This is mainly because of the relatively poor orbital overlap of the substituent's 3p (or higher) orbital with the 2p orbital of the carbon. Due to a stronger resonance effect and inductive effect than the heavier halogens, fluorine is anomalous.

  7. Helmholtz resonance - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_resonance

    Helmholtz resonance, also known as wind throb, refers to the phenomenon of air resonance in a cavity, an effect named after the German physicist Hermann von Helmholtz. [1] This type of resonance occurs when air is forced in and out of a cavity (the resonance chamber ), causing the air inside to vibrate at a specific natural frequency .

  8. Resonance - Wikipedia

    en.wikipedia.org/wiki/Resonance

    The Mössbauer effect is the resonant and recoil-free emission and absorption of gamma ray photons by atoms bound in a solid form. Resonance in particle physics appears in similar circumstances to classical physics at the level of quantum mechanics and quantum field theory .

  9. Multipactor effect - Wikipedia

    en.wikipedia.org/wiki/Multipactor_effect

    The multipactor effect is a phenomenon in radio-frequency (RF) amplifier vacuum tubes and waveguides, where, under certain conditions, secondary electron emission in resonance with an alternating electromagnetic field leads to exponential electron multiplication, possibly damaging and even destroying the RF device.