Ad
related to: equal and equivalent sets difference calculatorwalmart.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
In some cases, one may consider as equal two mathematical objects that are only equivalent for the properties and structure being considered. The word congruence (and the associated symbol ≅ {\displaystyle \cong } ) is frequently used for this kind of equality, and is defined as the quotient set of the isomorphism classes between the objects.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Equality is also the only relation on a set that is reflexive, symmetric and antisymmetric. In algebraic expressions, equal variables may be substituted for one another, a facility that is not available for equivalence related variables. The equivalence classes of an equivalence relation can substitute for one another, but not individuals ...
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
The set of the equivalence classes is sometimes called the quotient set or the quotient space of by , and is denoted by /. When the set S {\displaystyle S} has some structure (such as a group operation or a topology ) and the equivalence relation ∼ {\displaystyle \,\sim \,} is compatible with this structure, the quotient set often inherits a ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The equivalence class of a set A under this relation, then, consists of all those sets which have the same cardinality as A. There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each
Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.
Ad
related to: equal and equivalent sets difference calculatorwalmart.com has been visited by 1M+ users in the past month