Search results
Results from the WOW.Com Content Network
For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity".
For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...
The polynomial x 2 + 1 = 0 has roots ± i. Any real square matrix of odd degree has at least one real eigenvalue. For example, if the matrix is orthogonal, then 1 or −1 is an eigenvalue. The polynomial + has roots , +,, and thus can be factored as
The solutions of the system are in one-to-one correspondence with the roots of h and the multiplicity of each root of h equals the multiplicity of the corresponding solution. The solutions of the system are obtained by substituting the roots of h in the other equations. If h does not have any multiple root then g 0 is the derivative of h.
In mathematics, Budan's theorem is a theorem for bounding the number of real roots of a polynomial in an interval, and computing the parity of this number. It was published in 1807 by François Budan de Boislaurent. A similar theorem was published independently by Joseph Fourier in 1820. Each of these theorems is a corollary of the other.
Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity. For instance, it has been observed [ 2 ] that for a root x ℓ + 1 = x ℓ + 2 = ⋯ = x ℓ + d {\displaystyle x_{\ell +1}=x_{\ell +2}=\dots =x_{\ell +d}} with ...
The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...
This definition of a multiplicities by deformation was sufficient until the end of the 19th century, but has several problems that led to more convenient modern definitions: Deformations are difficult to manipulate; for example, in the case of a root of a univariate polynomial, for proving that the multiplicity obtained by deformation equals ...