enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    Pascal's triangle has many properties and contains many patterns of numbers. Each frame represents a row in Pascal's triangle. Each column of pixels is a number in binary with the least significant bit at the bottom. Light pixels represent 1 and dark pixels 0. The numbers of compositions of n +1 into k +1 ordered partitions form Pascal's triangle.

  3. Gould's sequence - Wikipedia

    en.wikipedia.org/wiki/Gould's_sequence

    Pascal's triangle, rows 0 through 7. The number of odd integers in row i is the i-th number in Gould's sequence. The self-similar sawtooth shape of Gould's sequence. Gould's sequence is an integer sequence named after Henry W. Gould that counts how many odd numbers are in each row of Pascal's triangle. It consists only of powers of two, and ...

  4. Triangular array - Wikipedia

    en.wikipedia.org/wiki/Triangular_array

    Pascal's triangle, whose entries are the binomial coefficients [8] Triangular arrays of integers in which each row is symmetric and begins and ends with 1 are sometimes called generalized Pascal triangles; examples include Pascal's triangle, the Narayana numbers, and the triangle of Eulerian numbers. [9]

  5. File:Pascal's Triangle rows 0-16; details.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Pascal's_Triangle_rows...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  6. Central binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Central_binomial_coefficient

    The powers of two that divide the central binomial coefficients are given by Gould's sequence, whose nth element is the number of odd integers in row n of Pascal's triangle. Squaring the generating function gives 1 1 − 4 x = ( ∑ n = 0 ∞ ( 2 n n ) x n ) ( ∑ n = 0 ∞ ( 2 n n ) x n ) . {\displaystyle {\frac {1}{1-4x}}=\left(\sum _{n=0 ...

  7. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then

  8. Star of David theorem - Wikipedia

    en.wikipedia.org/wiki/Star_of_David_theorem

    The two sets of three numbers which the Star of David theorem says have equal greatest common divisors also have equal products. [1] For example, again observing that the element 84 is surrounded by, in sequence, the elements 28, 56, 126, 210, 120, 36, and again taking alternating values, we have 28×126×120 = 2 6 ×3 3 ×5×7 2 = 56×210×36.

  9. APL syntax and symbols - Wikipedia

    en.wikipedia.org/wiki/APL_syntax_and_symbols

    The following is an APL one-liner function to visually depict Pascal's triangle: Pascal ← { 0 ~ ¨⍨ a ⌽⊃⌽∊ ¨ 0 , ¨¨ a ∘ ! ¨ a ← ⌽⍳ ⍵ } ⍝ Create one-line user function called Pascal Pascal 7 ⍝ Run function Pascal for seven rows and show the results below: 1 1 2 1 3 3 1 4 6 4 1 5 10 10 5 1 6 15 20 15 6 1 7 21 35 35 21 7