enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.

  3. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This method takes advantage of linear combinations of point values to construct finite difference coefficients that describe derivatives of the function. For example, the second-order central difference approximation to the first derivative is given by:

  5. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. [1]

  6. Nine-point stencil - Wikipedia

    en.wikipedia.org/wiki/Nine-point_stencil

    It is used to write finite difference approximations to derivatives at grid points. It is an example for numerical differentiation. This stencil is often used to approximate the Laplacian of a function of two variables. An illustration of the nine-point stencil in two dimensions.

  7. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  8. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.

  9. Nonstandard finite difference scheme - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_finite...

    Nonstandard finite difference schemes is a general set of methods in numerical analysis that gives numerical solutions to differential equations by constructing a discrete model. The general rules for such schemes are not precisely known. [1] [2]