enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    The empirical distribution of the data (the histogram) should be bell-shaped and resemble the normal distribution. This might be difficult to see if the sample is small. In this case one might proceed by regressing the data against the quantiles of a normal distribution with the same mean and variance as the sample. Lack of fit to the ...

  3. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.

  4. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  7. Q–Q plot - Wikipedia

    en.wikipedia.org/wiki/Q–Q_plot

    A normal Q–Q plot of randomly generated, independent standard exponential data, (X ~ Exp(1)). This Q–Q plot compares a sample of data on the vertical axis to a statistical population on the horizontal axis. The points follow a strongly nonlinear pattern, suggesting that the data are not distributed as a standard normal (X ~ N(0,1)). The ...

  8. Anderson–Darling test - Wikipedia

    en.wikipedia.org/wiki/Anderson–Darling_test

    The Anderson–Darling test assesses whether a sample comes from a specified distribution. It makes use of the fact that, when given a hypothesized underlying distribution and assuming the data does arise from this distribution, the cumulative distribution function (CDF) of the data can be transformed to what should follow a uniform distribution.

  9. Shapiro–Francia test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Francia_test

    If the data deviate strongly from a normal distribution, ′ will be smaller. [ 1 ] This test is a formalization of the older practice of forming a Q–Q plot to compare two distributions, with the x {\displaystyle x} playing the role of the quantile points of the sample distribution and the m {\displaystyle m} playing the role of the ...